
Vulnerability Prevention

Aravind Machiry

Holistic Software Security

● Prevent => Making sure that a program does not have vulnerabilities.

● Why does a program has vulnerabilities?

Can we prevent vulnerabilities?

How do we write programs?
I want to write code to do X:

1. Think about “How to do X” -> Algorithm.

2. Code <-> Test.

Development mindset => Will the code do “X”?

Security mindset => I want the code NOT to do Y.

Possible Y’s:

● Buffer overflow.

● Out-of-bounds access.

● etc.

Bridging the gap!
● Train developers to have security mindset:

○ Secure coding training.

● Enable developers to write code that “cannot” have vulnerabilities:
○ Provide Memory safe/Type safe languages:

■ Java, Python, C#, etc.

Memory Safety
● Spatial memory safety: Ensuring all memory dereferences are within the objects allocated space.

○ Out of bounds access, buffer overflow, underflow, etc.
○ arr[i]

● Temporal memory safety: Ensuring that memory dereferences are valid at the time of access.
○ Use-after-free, double free, etc.
○ free(p); *p = 0;

Type Safety
● Objects are well-typed and conversion between types is well-defined:

○ Ex: In Java, type conversion is allowed only with in subtypes.

● Is Python type safe?

● Is Java type safe?

● Is C++ type safe?

How is safety implemented?
● Runtime checking:

○ Language runtime: Java JRE.
○ Memory accesses are checked for violations.
○ Castings are also checked at time.

Safety is not free!
Performance: Time and Space.

* http://libcello.org/learn/benchmarks

High-performant safe languages
● Rust/Go:

○ Similar to C/C++, faster than Java, Python, etc.

● Lets always use Rust/Go!

What is the catch?

What about legacy code?

Can we ask all developers to convert their code to safe languages?

Retrofitting Techniques
● Retrofit safety to unsafe languages:

○ Modify language semantics so that certain safety properties can be achieved.

○ Performance overhead?
■ Space and Time.

○ Automated or manual?
■ Does developer has to make changes to the existing code?

Retrofitting Techniques: Principles
● Spatial memory safety (SMS):

○ An efficient way to track bounds (start and end) of the object being referenced.

● Temporal memory safety (TMS):
○ An efficient way to track lifetime of objects.

SoftBound: SMS
For each pointer variable (p) : Add two variables to track bounds (start : p_base) and end: p_bound).

Check each pointer dereference to be with in bounds.

value = *ptr; check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
value = *ptr;

void check(ptr, base, bound, size) {
 if ((ptr < base) || (ptr+size > bound)) {
 abort();
 }
}

SoftBound

SoftBound: Tracking Pointers

ptr = malloc(size);
ptr = malloc(size);
ptr_base = ptr;
ptr_bound = ptr + size;

newptr = ptr + index;
newptr = ptr + index;
newptr_base = ptr_base;
newptr_bound = ptr_bound;

p = &(n->num);
p = &(n->num);
p_base = max(&(n->num), n_base);
p_bound = min(p_base + sizeof(n->num), n_bound);

SoftBound: Tracking Pointers

int** ptr;
int* new_ptr;
(*ptr) = new_ptr;

SoftBound: Tracking Pointers

int** ptr;
int* new_ptr;
(*ptr) = new_ptr;

int** ptr;
int* new_ptr;
(*ptr) = new_ptr;
table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

newptr = *ptr;

newptr = *ptr;
newptr_base = table_lookup(ptr)->base;
newptr_bound = table_lookup(ptr)->bound;

SoftBound: Performance

SafeCode: SMS
● Use splay trees to store the bounds information of pointers:

○ Temporal locality: Recently accessed object will be accessed again.

○ Splay trees favors temporal locality:
■ Stack behaving tree: Recently inserted object will be fast to access.

SafeCode: Novelty
● Use pool allocation: Objects size fall into one of the predefined sizes. E.g., 16, 32, 64, etc.

● Split the global splay tree into multiple small splay trees:
○ One for each size.

● Given a pointer => Find its pool and check for the bounds in the splay tree of the corresponding

pool.

Low Fat Pointers: SMS
We can smartly allocate and know the base and bounds from the pointer itself.

Each region will only store objects of specific size. E.g., 0x800000000-0xfffffffff for objects of size < 16 bytes

Low Fat Pointers
p = malloc(10); // p: 0x8997f2820

q = p + 5; // q = 0x8997f2825

char get(char *q, int i) {
 return q[i];
}

char get(char *q, int i) {
 char *q_base = base(q);
 size_t q_size = size(q);
 char *r = q + i;
 if (r < q_base || r >= q_base + q_size)
 report_oob_error();
 return *r;
}

What is base(q) and size(q)?
base(q) =

size(q) =

base(q) = 0x8997f2820

size(q) = 16

Since q is within the range (0x800000000..0xfffffffff), we know that the allocation size of the object

pointed to by q is 16 bytes.

Base address should be: q - (q mod 16) = 0x8997f2820.

What is base(q) and size(q)?

Handling pointer arithmetic

● 56% for reads+writes

● 13% for writes-only

Overhead

● Handles temporal memory safety:
○ Should keep track of object life times.

● Keep tracks of heap objects in a red-black tree (shadowObjTree).
○ Each object has in-bound and out-bound pointers.
○ In-bound: Pointers that are pointing to the current object.
○ Out-bound: Objects to which the current object points to.

DANGNULL: TMS

DANGNULL

DANGNULL: Instrumentation

DANGNULL

DANGNULL: Helper functions

DANGNULL: Performance

Cost of automation
● High performance penalty.

● Not backward compatible:
○ E.g., regular pointers cannot co-exist with low fat pointers.

● Maintenance overhead: Should have these features in the latest compilers.

