Vulnerability Prevention

Holistic Software Security

Aravind Machiry

Can we prevent vulnerabilities?

e Prevent => Making sure that a program does not have vulnerabilities.

e Why does a program has vulnerabilities?

How do we write programs?

| want to write code to do X:

1. Think about “How to do X” -> Algorithm.

2. Code <-> Test.
Possible Y’s:
e Buffer overflow.

e OQut-of-bounds access.
e etc

Development mindset => Will the code do “X”?

Security mindset => | want the code NOT todo Y.

Bridging the gap!

e Traindevelopers to have security mindset:
o Secure coding training.

e Enable developers to write code that “cannot” have vulnerabilities:

o Provide Memory safe/Type safe languages:
m Java, Python, C#, etc.

Memory Safety

e Spatial memory safety: Ensuring all memory dereferences are within the objects allocated space.
o Out of bounds access, buffer overflow, underflow, etc.
o arr[i]

e Temporal memory safety: Ensuring that memory dereferences are valid at the time of access.
o Use-after-free, double free, etc.
o free(p); *p = 03

Type Safety

e Objects are well-typed and conversion between types is well-defined:
o Ex:InJava, type conversion is allowed only with in subtypes.

e |sPythontypesafe?
e IsJavatype safe?
e |sC++typesafe?

How is safety implemented?

e Runtime checking:
o Language runtime: Java JRE.
o Memory accesses are checked for violations.
o Castings are also checked at time.

1IC en]
enq

Agny
uoyaAd
jdTadsener

eAef

N®.m_ 11c em
99°0 I i

60°0 — adtadseaer

B.o_ i

1070 _ o119

1-5

+4)

b}

8220 . 11 em
8T°0 l uoyzd
I jdtudsener

Time and Space.

eAef

3
-

£1°0 . .

Performance

Safety is not free!

* http://libcello.org/learn/benchmarks

High-performant safe languages

e Rust/Go:

o Similar to C/C++, faster than Java, Python, etc.
e Letsalwaysuse Rust/Go!

What is the catch?

What about legacy code?

RFPOSITORY ACTIVE TOTAl SUSHFS NFW FORKS OPENFD ISSUFS NFW WATCHFRS APPFARFD
LANGUAGE REPOSITORIES PUSHES PER REPDSITORY PER REPOSITORY PERREPOSITORY PER RZPOSITORY IN YEAR

86,505 1,013,761

1983

Can we ask all developers to convert their code to safe languages?

Retrofitting Techniques

e Retrofit safety to unsafe languages:
o Modify language semantics so that certain safety properties can be achieved.

o Performance overhead?
m Spaceand Time.

o Automated or manual?
m Doesdeveloper has to make changes to the existing code?

Retrofitting Techniques: Principles

e Spatial memory safety (SMS):
o Anefficient way to track bounds (start and end) of the object being referenced.

e Temporal memory safety (TMS):
o Anefficient way to track lifetime of objects.

SoftBound: SMS

For each pointer variable (p) : Add two variables to track bounds (start : p_base) and end: p_bound).

Check each pointer dereference to be with in bounds.

value = *ptr;

—>
SoftBound

check(ptr, ptr_base, ptr_bound, sizeof(*ptr));
value = *ptr;

void check(ptr, base, bound, size) {
if ((ptr < base) || (ptr+size > bound)) {
abort();
}
}

SoftBound: Tracking Pointers

ptr = malloc(size);

ptr = malloc(size); E:::ZZZZZZi} ptr_base = ptr;

ptr_bound = ptr + size;

newptr = ptr + index;

newptr = ptr + index; E:::::ZZZZZ> newptr_base = ptr_base;

newptr_bound = ptr_bound;

&(n->num);
se = max(&(n->num), n_base);
und = min(p_base + sizeof(n->num), n_bound);

p = &(n->num); —— E ba
p_bo

SoftBound: Tracking Pointers

int** ptr;

int* new_ptr; ——>

(*ptr) = new_ptr;

SoftBound: Tracking Pointers

int** ptr;

int** ptr; int* new_ptr;

int* new_ptr; E::ZZZZZZZi} (*ptr) = new_ptr;

(*ptr) = new_ptr; table_lookup(ptr)->base = newptr_base;
table_lookup(ptr)->bound = newptr_bound;

newptr = *ptr;

_ % . [::::::::::> newptr_base = table lookup(ptr)->base;
newptr ptr; newptr_bound = table_ lookup(ptr)->bound;

: Performance

SoftBound

| _
| —
3
H..F
=
F& ﬁ
o &
mm _
=
43
T &
Om
|
S 2 L
(== P =

SafeCode: SMS

e Use splay trees to store the bounds information of pointers:
o Temporal locality: Recently accessed object will be accessed again.

o Splay trees favors temporal locality:
m Stack behaving tree: Recently inserted object will be fast to access.

SafeCode: Novelty

e Use pool allocation: Objects size fall into one of the predefined sizes. E.g., 16, 32, 64, etc.

e Split the global splay tree into multiple small splay trees:
o Oneforeachsize.

e Givenapointer => Find its pool and check for the bounds in the splay tree of the corresponding
pool.

Low Fat Pointers: SMS

We can smartly allocate and know the base and bounds from the pointer itself.

Each region will only store objects of specific size. E.g., 0x800000000-0xfffffffff for objects of size < 16 bytes

0x800000000

0x1000000000
0x1800000000
0x2000000000
0x2800000000

0

LowFat region #2 (32GB)

Low Fat Pointers

p = malloc(10); // p: 0x8997f2820

q=p+5;//q=0x8997f2825

char get(char *qg, int i) {
return q[i];

}

char get(char *q, int i) {
char *q_base = base(q);
size t q_size = size(q);
char *r = g + i;

if (r < gq_base || r >= gq_base + g_size)
report_oob_error();
return *r;

What is base(q) and size(q)?

base(q) =

size(q) =

What is base(q) and size(q)?

base(q) = 0x8997f2820
size(q) =16

Since q is within the range (0x800000000..0xfffffffff), we know that the allocation size of the object
pointed to by g is 16 bytes.

Base address should be: q - (g mod 16) = 0x8997f2820.

Handling pointer arithmetic

int list_length(Node x*1list)

1

2 {

3 int len = O0;

4 void *list_base = base(list);

5 size_t list_size = size(list);

6 while (list !'= NULL)

7 {

8 len++:

9 Node **next = &list->next;

10 void *next_base = list_base;
1 size_t next_size = list_size;
12 if (is00B(next, next_base, next_size))
13 error () ;

14 list = *next;

15 list_base = base(list);

16 list_size = size(list);

17 }

18 return len;

Overhead

e 56% forreads+writes

e 13% forwrites-only

DANGNULL: TMS

e Handles temporal memory safety:
o Should keep track of object life times.

e Keep tracks of heap objects in a red-black tree (shadowObjTree).
o Eachobject has in-bound and out-bound pointers.
o In-bound: Pointers that are pointing to the current object.
o Out-bound: Objects to which the current object points to.

DANGNULL

shadowObjTree

doc body)
n out i In out "; in out
\\ I"' “‘\ A

doc - child body - child

DANGNULL: Instrumentation

(a) memory allocations
Document *doc = new Document();
Body *body = new Body();

Div *div = new Div(Q);

// (b) using memory: propagating pointers
doc->child = body;
body->child = div;

// (c) memory free: doc->child is now dangled
delete body;

/ (d) use-after-free: dereference the dangled pointer
if (doc->child)
doc->child->getAlignQ);

——>
DANGNULL

// (a) memory allocations

+ Document *doc = allocObj(Document);
+ Body *body = allocObj(Body);

+ Div *div = allocObj(Div);

// (b) using memory: propagating pointers
doc_>child = body;
| + trace(&doc->child, body); |

bodv->child = div.
|+ trace(&body->child, div); I

// (c) memory free: unsafe dangling pointer, doc->child,
is auto&atically nullified
| + freeObj (body); |

// (d) use-aftre-free is prevented, avoid dereferencing it
if (doc->child)
doc->child->getAlign();

DANGNULL: Helper functions

def allocObj(size):
ptr = real_alloc(size)

shadowObj = createShadowObj(ptr, size)

shadowObjTree.insert (shadowObj)
return ptr

NOTE. lhs <- rhs

def trace(lhs, rhs):
lhsShadowObj = shadowObjTree.find(lhs)
rhsShadowObj = shadowObjTree.find(rhs)

if lhsShadowObj and rhsShadowObj:
removeOldShadowPtr(lhs, rhs)
ptr = createShadowPtr(lhs, rhs)
lhsShadowObj . insertOutboundPtr(ptr)
rhsShadowObj . insertInboundPtr (ptr)
return

Check if lhs and rhs are eligible targets.

def freeObj(ptr):
shadowObj = shadowObjTree.find(ptr)

for ptr in shadowObj.getInboundPtrs():
srcShadowObj = shadowObjTree.find(ptr)
srcShadowObj . removeOutboundPtr(ptr)
if shadowObj.base <= ptr < shadowObj.end:
“ptr = NULLIFY_VALUE

for ptr in shadowObj.getOutboundPtrs():
dstShadowObj = shadowObjTree.find(ptr)
dstShadowObj . removeInboundPtr (ptr)

shadowObjTree.remove (shadowObj)

return real_free(ptr)

DANGNULL: Performance

T

T

ol

500

300

200
100 -
0

xalancbmk
sphinx3
astar
Ibm
h264ref
sjeng
hmmer
povray
soplex
gobmk
namd
milc
mcf
gee
bzip2

Cost of automation

e High performance penalty.

e Not backward compatible:
o E.g,regular pointers cannot co-exist with low fat pointers.

e Maintenance overhead: Should have these features in the latest compilers.

